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ABSTRACT: We present a model of supersymmetry breaking in which the contributions
from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this
scenario “deflected mirage mediation,” which is a generalization of the KKLT-motivated
mirage mediation scenario to include gauge mediated contributions. These contributions
deflect the gaugino mass unification scale and alter the pattern of soft parameters at low
energies. In some cases, this results in a gluino LSP and light stops; in other regions of pa-
rameter space, the LSP can be a well-tempered neutralino. We demonstrate explicitly that
competitive gauge-mediated terms can naturally appear within phenomenological models
based on the KKLT setup by addressing the stabilization of the gauge singlet field which
is responsible for the masses of the messenger fields. For viable stabilization mechanisms,
the relation between the gauge and anomaly contributions is identical in most cases to that
of deflected anomaly mediation, despite the presence of the Kéhler modulus. Turning to
TeV scale phenomenology, we analyze the renormalization group evolution of the super-
symmetry breaking terms and the resulting low energy mass spectra. The approach sets
the stage for studies of such mixed scenarios of supersymmetry breaking at the LHC.

KEYWORDS: Bupersymmetry Breaking, Supergravity Models, Supersymmetry|

[Phenomenology.



mailto:leverett@wisc.edu
mailto:ikim@physics.wisc.edu
mailto:pouyang@wisc.edu
mailto:kzurek@wisc.edu
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch

Contents

|I|. Introduction and motivation

=

7~

2. Moduli stabilization and supersymmetry breaking
P Theoretical background

PR3 Review of KKLT modulus stabilization

P.:J Stabililization of the matter modulus X

[ =1 =1 [

MSSM soft supersymmetry breaking terms

Renormalization group analysis and low energy mass spectra
B (Deflected) Mirage unification

B3 Examples

= E

Bl. Conclusions

&

. Anomalous dimensions

1. Introduction and motivation

Low energy (electroweak to TeV scale) softly broken supersymmetry (SUSY) (for recent
reviews, see [, @) has long been considered to be the best-motivated candidate for physics
beyond the Standard Model (SM), due to its elegant resolution of the hierarchy problem,
radiative mechanism for electroweak symmetry breaking, and predicted dark matter can-
didate (assuming a conserved R-parity). Theories with low energy supersymmetry, such
as the minimal supersymmetric standard model (MSSM), will shortly face unprecedented
experimental tests at the Large Hadron Collider (LHC) at CERN. As the phenomenology
of such theories is dictated by the superpartner mass spectrum, which in turn is governed
by the soft supersymmetry breaking sector, understanding how SUSY is broken is the most
important question for studies of low energy supersymmetry at the LHC.

In viable models of supersymmetry breaking, supersymmetry is broken in a hidden or
secluded sector and is transmitted to the observable sector by mediator fields, which develop
auxiliary component (F and/or D term) vacuum expectation values (vevs). The mediators
generically couple to SM fields via loop-suppressed and/or nonrenormalizable interactions.
In each model, the characteristic spectrum of soft masses is set by: (i) the specific mediation
mechanism of SUSY breaking, (ii) which mediators get the largest auxiliary field vevs, and
(iii) the dominant effects which produce the couplings between the mediators and the SM
fields. Hence, as supersymmetry breaking itself typically occurs at a high scale, the low



scale pattern of soft masses may tell us something about the high scale physics, not directly
reachable by experiments, which determines these parameters.

Phenomenological studies of low energy supersymmetry largely focus on models in
which one mediation mechanism is dominant (see e.g. [[]); in the bottom-up approach, this
is often to solve a given phenomenological problem of the MSSM (such as the p problem,
the flavor /CP problems, etc.). Such models can be roughly classified into gravity mediated,
gauge mediated, and (braneworld-motivated) “bulk” mediated models. Gravity mediated
terms [, which arise from couplings that vanish as the Planck mass Mp — oo, include
modulus mediation contributions [§] and (loop-suppressed) anomaly mediation terms [f],
among others. Gauge mediated terms arise from loop diagrams involving new messenger
fields with SM charges [[]—ff], whereas bulk mediated terms arise from bulk mediator fields
in braneworld scenarios, such as gaugino mediation [I(] and Z’ mediation [[1]]. Since
gravity is a bulk field, certain gravity mediated models, which include the pure anomaly
mediation scenario (which requires sequestering), are also bulk mediation models.

A complementary approach is to consider models in which more than one mediation
mechanism plays an important role. Such scenarios can be motivated within the top-
down, string-motivated approach to supersymmetry breaking; the prototype example of
this type is mirage mediation [[2, [[J], which is motivated from the Kachru-Kallosh-Linde-
Trivedi (KKLT) approach to moduli stabilization within Type IIB string theory [14]. In
mirage mediation, the modulus mediated supersymmetry breaking terms are suppressed
by In M1 /ms /2, which is numerically of the order of a loop factor, such that the anomaly
mediated terms are competitive. This results in mirage unification, in which the gaugino
and scalar masses unify at a scale much below where the soft masses are generated. Mirage
mediation has distinctive phenomenological features [[§—[J], including a non-standard
gaugino mass pattern [[[J] and reduced low energy fine-tuning [0].

In this spirit, we recently outlined a framework in which the KKLT-motivated mirage
mediation scenario was extended to incorporate three of the most-studied supersymmetry
breaking mechanisms: modulus mediation, anomaly mediation, and gauge mediation [R]]
(for a similar scenario, see [J]). We argued in [PI] that the necessary ingredients for gauge
mediated contributions can naturally be present within the KKLT setup and demonstrated
the gauge mediated terms are indeed comparable to the modulus and anomaly mediated
terms, leading to a scenario we denoted as deflected mirage mediation. The gauge-mediated
terms deflect the soft terms from their mirage mediation renormalization group trajectories,
in analogy with deflected anomaly mediation 23, 4] (for a more recent analysis see [RJ]).
This effect deflects the gaugino mass unification scale and modifies the values of the soft
terms at low energies. As in mirage mediation, the pattern of soft masses depends on
the ratios of the contributions from the different mediation mechanisms. These ratios,
which are parameters of the model, generically take on discrete values in string-motivated
scenarios in which the stabilization of the mediator fields is addressed.

This paper is a companion to our previous paper [@, in that here we provide a detailed
discussion of deflected mirage mediation. Our primary goal is to demonstrate explicitly that
the approach is on firm theoretical ground within the KKLT-motivated setup. In particular,
we will show that the mediator of gauge mediation can acquire an F term vev purely



through supergravity effects, eliminating the need for a separate dynamical supersymmetry
breaking sector. This leads to competitive contributions to the observable sector soft
terms from gauge mediation to the previously known mirage mediation results. Since
this mediator field is a matter modulus which requires stabilization, we consider several
possible stabilization mechanisms, including stabilization through radiative supersymmetry
breaking effects and stabilization by higher-order superpotential self-couplings, which have
previously been considered in the context of deflected anomaly mediation [PJ]. We find
the interesting result that despite the presence of the Kéhler modulus, the ratio between
the gauge mediated and anomaly mediated contributions is identical in most cases to what
was found in deflected anomaly mediation. With this in hand, we compute the MSSM soft
terms, and study the renormalization group trajectories of the parameters and the resulting
low energy mass patterns. The analysis sets the stage for further phenomenological studies
of low energy supersymmetry within this general framework.

The outline of this paper is as follows. In section B, we discuss the theoretical motiva-
tion and model-building aspects of deflected mirage mediation, focusing on the stabilization
of the mediator fields. We compute the soft supersymmetry breaking parameters of the
MSSM fields in section [J. The phenomenological implications of this string-motivated
scenario are presented in section . Our analysis includes an investigation of the renormal-
ization group running of the parameters and sample spectra for theory-motivated choices
of the parameters, including the phenomenologically interesting case in which all contribu-
tions are roughly of the same size. In section [J, we provide our conclusions and outlook.

2. Moduli stabilization and supersymmetry breaking

In this section, we provide a detailed discussion of the theoretical background and model-
building aspects of deflected mirage mediation within the context of the KKLT approach
to moduli stabilization, which has been a primary motivation for mirage mediation models.
Recall that in the KKLT construction [[[4], which was inspired by various results in Type I1B
string theory flux compactifications (see e.g. [24]), four-dimensional N' = 1 supersymmetry
is broken by anti-branes located at the tip of the warped throat geometry produced by
three-form fluxes, while the observable sector arises from stacks of D branes located in the
bulk Calabi-Yau space, as shown schematically in figure [l.

In phenomenological models based on this construction, it was found [[3, [[J] that the
observable sector soft SUSY breaking terms are dominated by two mediation mechanisms:
(i) modulus mediation, due to the Kéhler modulus T, and (ii) anomaly mediation, which
can be represented by the conformal compensator field C of the gravity multiplet. As the
scale of observable sector soft terms due to modulus mediation is of the order

T
(modulus) _ F'
Mate ™ (2.1)
while that of the (loop-suppressed) anomaly mediated terms is of the order
(&
( ly) 1 F
Moot~ T2 (2.2)
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Figure 1: The KKLT-motivated braneworld setup for deflected mirage mediation.

the comparable size of the two scales indicates a suppression of the modulus F term; the
suppression factor was determined to be In(Mp/m3/9) ~ 472 (13, L3

In deflected mirage mediation, this KKLT-motivated picture is generalized to include
additional observable sector superfields, a gauge singlet X and N vectorlike pairs of “mes-
senger” fields ¥, U with SM gauge charges, as shown in figure . Such states are generically
present in string theory models along with the MSSM fields, so their inclusion is not with-
out top-down motivation. In this string-motivated context, X represents an open string
mode which starts and ends on observable sector branes, not an open string mode which
connects observable and hidden sector branes. X is thus sequestered from the hidden sec-
tor in the same way as the MSSM matter content. More generally, the X field can thus be
regarded as a matter modulus which must be also stabilized by some mechanism.

Interestingly, if the stabilization mechanism is mainly due to supersymmetry breaking
effects, then the supersymmetry breaking order parameter FX /X can have the same order
of magnitude as other SUSY breaking order parameters. We will demonstrate that X can
acquire an F term vacuum expectation value purely due to supergravity effects, such that
the separate dynamical supersymmetry breaking sector typically needed in gauge mediation
models is not necessary. This leads to an additional contribution to the observable sector
soft terms through gauge-mediated messenger loops:

X
(gauge) 1 F
msift & ~ —1671'2 7 (23)
We will also show that in a broad class of models,
FX  pcC
X o 24)

(anom)

(gauge) oy generically be comparable to mg "~ ’ and m &)

soft soft
this paper is simply to demonstrate that all three mediation mechanisms can in principle

and hence m Our goal in

coexist, although more detailed model-building would certainly be interesting. To this
end, in what follows we will address the stabilization of X and T within the context of the



four-dimensional effective supergravity theory of this KKLT-motivated scenario.!

2.1 Theoretical background

We begin with the four-dimensional ' = 1 effective supergravity within this class of KKLT
constructions, which can be expressed concisely in the chiral compensator formalism,

L= /d‘*&CCG@@ [/d29 fa(®)YWWE 4 /d2903 ®) +hc.|, (2.5)

in which C' is the chiral compensator and ® denotes a generic chiral superfield. In eq. (P.§),
G((I)76) = -3 eXp(_K((I)76)/3)7 (2.6)

where K is the Kahler potential, W¢ are the (generically ®-dependent) gauge field strength
superfields of the SM gauge groups G, = {SU(3)c, SU(2)r, U(1)y}, and W(®) is the
superpotential. The vev of the gauge kinetic function f, (which can be field-dependent) is
related to the gauge coupling g, and 6, parameter via
1 6,
(fa> - _2 + ZW.

a

(2.7)

As stated previously, we study the scenario in which ® includes the Kéhler modulus T
associated with the volume of the compact space, the gauge singlet X, the N messenger
pairs ¥, U (usually taken to be complete multiplets under a grand unified group which
contains the SM gauge group to preserve gauge coupling unification), and the MSSM fields,
which we now denote as ®;. Furthermore, we consider the situation in which only T, C,
and X develop sizable F term vacuum expectation values.

The Kéahler potential can be expanded in powers of ®; according to

K =Ky(T)+ Zx(T,T)XX + Z;(T, T)®:®; + O ((|2|*,|X])) , (2.8)

in which Kj is the Kihler potential of T, and Zx (Z;) is the Kihler metric of X (®¢). In
eq. (R.§), we have assumed a diagonal matter metric for simplicity. Higher order terms are
ignored, since the vevs of X and ®* are assumed to be negligible compared with the Planck
scale. At leading order, K| generically is assumed to have the “no-scale” form

Ko(T,T) = —3log(T +T). (2.9)
To see deviations from this form, we will use the following generalization:
Ko(T,T) = —plog(T +T), (2.10)

such that we can examine the results with the no-scale form by setting p = 3. The Kéhler
metrics Zx (T,T) and Z;(T,T) are dictated by the geometric scaling behavior of X and ®;
with respect to changes in the overall compactification volume. Zx and Z; are given by

Zx = ;_, Z; = %, (2.11)
(T + T)nx (T +T)m™

"Mostly, we will use units in which the reduced Planck mass Mp = 2.4 x 10'® GeV is set to unity, but
will restore it occasionally when discussing issues regarding orders of magnitude.



in which nx and n; are the modular weights of X and ®;, respectively. The superpotential
takes the form
W =Wy+ Wi(X) + AX U + Wirss, (2.12)

in which Wy is the stabilizing superpotential for 7', W7(X) denotes the singlet self-
interaction superpotential terms, and Wyisgm is the standard MSSM superpotential. Here
we have assumed a renormalizable superpotential coupling among X and the messenger
pairs; a generalization to higher order interaction terms is straightforward. Wy is given by

Wo = wo — Ae™ T, (2.13)

in which wy is a constant superpotential term determined by the flux compactification, and
the second term is a nonperturbative contribution which arises from gaugino condensation
or D3-instanton corrections, such that a ~ O(87%) and A ~ O(M3). In the standard
KKLT model, one makes the further assumption that the perturbatively generated wg can
be chosen to be small enough that the nonperturbative term is competitive with it for
moderately large T'. This assumption justifies the neglect of higher string corrections, and
allows us to use the no-scale Kéahler potential of eq. (@) We will study three possibilities
for the functional form of the singlet self-interaction Wi (X):

e The singlet X may have a mass term, such that at leading order
1
Wi(X) = 5m(X — Xo)?, (2.14)

where X is the vacuum expectation value of X. This corresponds to supersymmetric
stabilization via F terms; one can also consider D term stabilization, such as through
an anomalous U(1), as discussed in [[[7.

e The singlet may have no self-interactions, such that
Wi (X) =0. (2.15)

In this case, X is stabilized due to radiative corrections to the X-dependent super-
symmetry breaking potential.

e The self-interactions may appear at renormalizable or higher order, or can be gener-
ated by a nonperturbative mechanism:

X’I’L

WI(X) = W)

(2.16)

in which A is the scale at which these terms are generated. For perturbatively gen-
erated terms, A is the cutoff scale, while for nonperturbatively generated terms, A is
the scale associated with dynamical symmetry breaking.

In the KKLT setup, the combination of the two terms of the stabilizing potential W
for T leads to a supersymmetric minimum with a negative cosmological constant. To break
supersymmetry and cancel the cosmological constant, anti-D3 branes are put at the tip of



the warped throat. Such breaking effects are encoded in Lagrangian terms with nonlinearly
realized supersymmetry. The set of such terms relevant for low energy supersymmetry
breaking is given by the following contribution to the scalar potential:

LN ~ — / d*0(CC)*Po*6?, (2.17)

in which P generically can be a function of the superfields ®. In the KKLT construction,
P is effectively constant due to the warped geometry. Here we will generalize this form to

P~ (T+T)"". (2.18)

The nonlinearly realized sector is assumed to be well sequestered from the observable sector
matter fields (e.g. X, ®;). Eq. (R.1§) leads to a so-called uplifting potential of the form

D

V= 7@ = (2.19)

In the KKLT model, np = 0 and D is the warped string scale at the tip of the throat.

2.2 Review of KKLT modulus stabilization

Let us briefly review the stabilization of T, assuming that only 71" plays an important role
(further details can be found in the mirage mediation literature [[3, [J]). Heuristically
speaking, the argument is as follows. In the absence of the uplifting potential of eq. (2.19),
T is stabilized at a supersymmetric minimum due to the interplay of the flux-generated
and nonperturbative terms in Wy (7" would be a flat direction in the absence of the non-
perturbative term; a runaway behavior would result if wg = 0). The modulus vev ¢y thus
satisfies the F-flatness condition:

DrWo = 0rWo + KWy = 0, (2.20)

in which K = 0rK and Wy # 0. This results in a supersymmetric AdS vacuum, with
vacuum energy given by —3m§ /2 M}%. As we will see explicitly below, the uplifting potential
shifts the vacuum expectation value of 1" by an amount of order

m2
AT o ( 32/2) , (2.21)
t() mp
in which the mass of T’
K202 1
mp o~ — —— L (2.22)
ororK _—

will turn out to be parametrically larger than the gravitino mass mg/; = e/ 2|W|. This
vacuum shift induces an F term for T" of the order

T m2
o <ﬂ> . (2.23)

T+T mr



Since FT /(T +T) dictates the size of the observable sector supersymmetry breaking, the
mass of the T" modulus governs the extent to which modulus mediation contributes to the
soft terms. Hence, the F terms of moduli with masses of order the string scale, such as the
dilaton and complex structure moduli, are irrelevant for TeV scale phenomenology.

To determine FT /(T 4+ T) and mg, we take the standard approach of treating the
uplifting potential as a perturbation about the supersymmetric minimum; this procedure
is valid since T generically has a large vacuum expectation value, and the curvature of
the potential at this minimum is governed by mp > mg/,. The unperturbed minimum is
determined from eq. (2.20) (using eqs. (R.10) and (R.13) and assuming a real ty) as follows:

—a p —aT
DrWy = ade T — ——(wy — Ae™T) (2.24)
(T + T) T=to
The solution for tj is given by the expression
pwo p
ato = ~W (_ 2Aep/2> -2 (229)

in which W(z) is the Lambert W function, which is the solution z of the equation x = ze®.
Note that if wq is exponentially small, eq. (R.25) reduces to

ato ~ In <£>. (2.26)
Wo
The gravitino mass is
— Kol2yy — _1 Ae~ 30 ~ 71 2.27

in which the last approximate equality holds if aty > p/2. Since this expression should not
change in the presence of the uplifting potential, eq. (2:26) yields

atg ~ log(Mp/mg/g), (2.28)

recalling that A ~ M3} and wg ~ mg /2M123. From eq. (R.22) (still neglecting the uplifting
potential), the mass my is of the order

mr ~ 2atoms)s, (2.29)

which demonstrates that my is indeed parametrically heavier than the gravitino mass.

Turning now to the effects of the uplifting potential, one must keep in mind that the
vacuum expectation value of Vi must be of the order 3m§ /2M123 to cancel the negative
cosmological constant of the supersymmetric AdS minimum. FExpanding T about the
minimum ¢ given in eq. (B.25), the scalar potential takes the form

p At
Viprar = —zmi (A)? =32 —ny)m3 ), ( — ) - (2.30)
4ts to
Minimizing this potential with respect to dt leads to
|4 2 2 —
OV ey 3 ”P)m§/2 ~0, (2.31)
OAt|, 5  2t3 to



such that )
At _ 6(2 —np) M3)/2

— = . 2.32
to P m, (2.82)
The shift in the vacuum expectation value of T induces an F term of the form
T 6(2—np) m% 2
FT = —eKo/2(g)TTpye = 22— 92 (2.33)
p mr
The compensator also gets a nonzero F term when supersymmetry is broken,
C’ 2 wo
FC=="qAe T ~nC—— . 2.34
3 (T +T)p/2 (2:34)

Comparing eq. (£.34) with eq. (.27) demonstrates that the gravitino mass is approximately
given by mg/; ~ F¢/C. Hence,

FT' 3(2-n,) 1 F¢
T+T  2p aty C°

(2.35)

In the KKLT case with p = 3 and n, = 0,

Fr 1 F°
T+T atg C°

(2.36)

Eq. (:38) shows that the modulus mediation contribution F /(T + T) is suppressed with
respect to F©/C by atg ~ In(Mp/ms /2) ~ 472, Since this factor is numerically of the order
of a loop suppression, the modulus and anomaly mediated soft terms are comparable, which
is the standard mirage mediation result.

2.3 Stabililization of the matter modulus X

To generalize to the case in which X and the messenger pairs are present, we will now
address the issue of the stabilization of X within each of the three previously discussed
stabilization mechanisms.

Supersymmetric stabilization at a high scale. We first consider the case in which
X is stabilized by a supersymmetric mechanism at a high scale. One example is F term
stabilization through an explicit superpotential mass term of the form W = %m x(X —Xg)?
as in eq. (R.14), which may be thought of as the leading term in a Taylor expansion of the
potential. For this term to play an important role in the stabilization of X, the mass
parameter myx must be hierarchically larger than the gravitino mass, and the vacuum
expectation value Xy should be less than the Planck mass. In the absence of the uplifting
potential Vr, the F term of X clearly vanishes. If supersymmetry breaking effects acted to
shift the vev of X, a nonzero F* would be induced (as in the case of T'). However, here such
effects do not lead to a shift in X. For example, the soft supersymmetry breaking B term
associated with eq. (2.14) generated from anomaly mediation has the form O(mg/ymx (X —
X0)?), which keeps the vev of X at Xj; higher-order terms will also maintain X = X as



a (meta-)stable vacuum. Therefore, if my > mga, F X will be zero, resulting in no
gauge-mediated contributions to the MSSM soft terms.

The situation is more involved when considering D term stabilization via Fayet-
Iliopoulos (FT) terms, which can result in supergravity either from (i) gauged U(1)g sym-
metries or (ii) anomalous U(1) gauge groups. The case of the anomalous U(1) was studied
in [, we summarize their results here for completeness. Such anomalous U(1) gauge
groups are ubiquitous in string models. Their anomalies are canceled at one-loop by the
Green-Schwarz mechanism, which manifests itself in the low energy effective field theory
as a nonlinear realization of the U(1) symmetry, under which a subset of the moduli (the
Green-Schwarz moduli) transform. This effect breaks the U(1) gauge symmetry at a scale
given by the string scale divided by a loop factor, and leads to a moduli-dependent FI term.
Hence, if X is charged under the anomalous U(1), it can be triggered to acquire a vev by
the FI term. In this case, the X degree of freedom is absorbed in the vector multiplet
of the anomalous U(1), and FX can be induced if the Green-Schwarz modulus has an F
term. In KKLT models, T' can be a Green-Schwarz modulus, but the induced FX /X is
O(FT /(T +T)), which gives a subleading contribution to the soft terms [[7).

In summary, stabilizing X at a high scale either by F terms or D terms does not yield
a situation in which FX /X results in comparable soft terms to that of mirage mediation.
Hence, we now turn to the other two stabilization mechanisms.

Radiative stabilization. We now consider the case in which X is massless before super-
symmetry breaking. If X has no superpotential self-interactions, as in eq. (R.15), a purely
nonsupersymmetric stabilization results because once supersymmetry is broken, X should
acquire a soft mass from anomaly mediation, lifting its flat direction. If this soft mass
term for X changes sign at a particular scale due to renormalization group running, X is
stabilized at a value of the order of this crossover point. More precisely, since X couples
to the vectorlike matter pairs ¥, ¥ with coupling strength A (see eq. f12),

FC

C

1

V(X) ~ 1672

NA(X)? [ApX*(X) — Caga(X)] X[, (2.37)

for some positive Ag and C,. One can think of this potential as being generated by the
Coleman-Weinberg mechanism [R7]; it arises from integrating out the messengers ¥ at
one loop. Depending on A and g,, X can be stabilized at a scale anywhere between the
electroweak scale and the UV cutoff scale [BJ]. The vev that sets the mass also sets the
scale of the messengers ¥, as seen in eq. (R.13).

The F term of X induced by this radiative stabilization mechanism can be simply
obtained by

FX o~ B0 2gXXD oW o B RXX K oWy o~ —mg ) X, (2.38)
such that
FX F¢

— 10 —



The contribution to the observable sector soft terms from gauge-mediated interactions
involving messenger loops is thus comparable to the anomaly-mediated terms. This result is
identical to that of the deflected anomaly mediation scenario of Pomarol and Rattazzi 23],
despite the nontrivial Kahler potential of X and 7. The feature that the F terms for this
model are equal in magnitude but opposite in sign is distinctive; as a result, deflected
anomaly mediation is also called “anti-gauge mediation” [RJ]. As we will see shortly,
this relation can be modified by giving X a more complicated superpotential. It is also
worthwhile to note that the standard mirage mediation F term constraints for 7" and C' are
only modified by Planck-suppressed corrections, provided that FX and FC are comparable,
and also that X is stabilized below the Planck scale.

Higher-order stabilization. Let us finally consider the case in which X is stabilized by
the interplay between the scalar potential induced by supersymmetry breaking effects and
higher-order X self-interaction superpotential terms, as represented by Wi in eq. (R.19).
This situation was also considered in [RJ] for the case of deflected anomaly mediation. Here
we limit ourselves to the case in which only a single term in W; of the form of eq. (R.1¢)
dominates the stabilization: xn

Wi=%=

.., (2.40)

in which A is the cutoff scale. The exponent n can have an arbitrary value which may
be positive or negative; a negative exponent would indicate that this term originates from
nonperturbative dynamics. The Kéahler potential terms which are relevant for the stabiliza-
tion of X are the leading order contributions for 7' and X as given in eq. (R.§), eq. (2.10),
and eq. (R.11)). Revealing the comformal compensator dependence, the Kihler terms of the
superspace action are

/ 449G = / 40 (—306e—K/3)
_ _ _ 1 _
. p/3
3CC(T + Ty 4+ CC S ST XX
1 =
(T T)ypa

12

—3CC(T + TP +

12

(2.41)

in which X is holomorphically redefined to X = C'X to simplify the Kéhler potential.2
The scalar potential is of the form

V=G, zF'F", (2.42)
in which the indices A, B run over C, T, X, and G 45 = 0405G. The F terms are given by

FA = —GABag(C*W), (2.43)

in which GAB is the inverse of G A5- We pause to comment here that the F term equa-

tions for the messengers impose the condition that the messenger vevs must vanish; these

20ur definition of X and X is opposite to that of @]

— 11 —



constraints can be consistently satisfied after supersymmetry breaking as well. Hence, the
messenger fields and their F-terms can be safely set to zero in the following analysis.

In the calculable scenario in which the vev of X is smaller than Mp, such that higher-
order Kihler potential terms for X can be safely neglected, X and FX can be treated as
small numbers, and 7', FT and F can be perturbed about the values which were obtained
in the previous subsection:

FC = FY +6F°,

FT = FI' 4+ 6FT, (2.44)
in which F§' and F{ are the F terms of C' and T in the absence of X:
_2_
— — C"Wy
FC ~ T X037, = —_—
0 T T T
Fy 2 K
0_ — — -9 (2.45)
T+T a(T+T)C
Therefore, we obtain
1 X' -3 CWo o=
SFC = Z(p-3)(n—3)—————— - L —0 XX (2.46)
9 A=3C" (T + THp/3 9 C(T+T)stnx
— ~—=n—1
— g(p 3nx) N 7
9CC" "An=3(T +T)P/3
- T +T)-P/3—=n — CWwW -
sFT = P rmx _+_2) X"y PNy ¢ Wo XX, (2.47)
D CC" An—3 3p  C2T +T)p/3+nx—1
and . /3
: T+ T)nx—r/3 —
px o _n+1) X)L (2.48)

An—3€n_3
Given that the perturbation to the scalar potential due to 6F4 is §V = GAB(SFAFOB, we
can see that the leading order terms in powers of X are O (X' 2"_2>, @) <m3 /25( "), and

@) (m?,’ /2X 2). Hence, we expect

1

% n—2
X ~ Mg
2n—2

M3 X2~ mgp X"~ X2 g ? (2.49)

Ignoring the subleading order terms, which are suppressed by X /Mp, X /A (or A/X for
nonperturbative corrections) and 1/In(Mp/ms/s), we find

1 ES X"
n(p — 3nx) FOC}X”_I
— h.c.
+ 3 <An—3CCn—3 +h.c
2 T T nx—p/3 ___
n(T+7) X )1, (2.50)

T A2(n=3)(CC)n—3
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Let us assume that X = X and C' = C, in which case we obtain

~ _C_~n —
B FOCXn + FO X n2(T + T)”X—p/3 ~—=\n—1
0V =(n—3) AnR—3Cn—2 A2(n—=3) 02(n—3) < > ’ (2.51)
Minimizing 6V shows
. _ An—3 n—3 FC’* 1/(n—2)
X |-n=3 _C . (2.52)
n(n—1) (T +T)nx-»r/3 C
Using this result in eq. (B-48) and comparing it with eq. (B.4]), we obtain
FX o FC
X n—10C
Replacing X with X thus leads to the result
FX 2 FC¢
—_— = — (2.54)
X n—1C

Since the modulus and anomaly contributions are already comparable (see eq. (R.3d)), this
result indicates that all three contributions should be roughly equal for a very general class
of superpotentials. Interestingly, this result is also the same as that obtained in the case
of deflected anomaly mediation [RJ], keeping in mind our definitions of X and X.

In summary, we have demonstrated that in the absence of a bare superpotential mass
term for X, both radiative stabilization and stabilization via higher-order superpotential
self-interactions lead to values of FX /X which are of the order of F“/C, which result in
comparable contributions to observable sector soft terms. We now turn to the issue of
computing the soft masses generated by these F terms.

3. MSSM soft supersymmetry breaking terms

The F term vevs studied in the previous subsection control the nature of the soft terms
induced by supersymmetry breaking. The specifics of the top-down model are no longer
essential for our phenomenological purposes, and it suffices to simply take the F terms as
parameters. By varying these parameters, we can obtain general mixtures of the moduli,
gauge, and anomaly mediation. With a given set of F terms, the soft mass spectrum
can be computed using the spurion technique; it depend on the vevs of the modulus and
compensator fields, the messenger scale, and the number of messengers, in a manner which
we will now review.

Before we present the derivation of the soft terms, let us first recall the form of the
MSSM superpotential. In general, the superpotential of the MSSM fields ®; takes the form

Wssm = 103 ®i®; + 475, P ®; P, (3.1)

in which ,u% are supersymmetric mass parameters, and y?j i are the (unnormalized) Yukawa
couplings. We assume that only trilinear couplings are present in the superpotential, and
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defer the discussion of supersymmetric mass terms (i.e. the p problem of the MSSM) until
later in the paper. In addition to the couplings of eq. (B.]), the ®; fields have Kihler
metrics given by eq. (R.11]). For the computation of the soft terms, the quantities

Y; = e K037, (3.2)

are useful for discussing the renormalization group evolution effects. The Y; are the coeffi-
cients of the bilinear terms in the nonholomorphic part of the superspace action:

/ d'0CCG = / d*0CC (—3exp(—K/3)). (3.3)

For our scenario, the Y; are given by

Y, = % (3.4)
(T+T)"5s

To derive the observable sector soft terms, it is convenient to use the spurion technique,

in which the couplings of the effective supergravity Lagrangian are regarded as functions

in superspace, with the #-dependent parts of these couplings are generated by the F term

vevs of the theory (for a review, see [f]). More precisely, in the presence of F' ¢ FT and

FX, the gauge kinetic function f, can be analytically continued to a superspace function

fo = falo + 0% (0 falo FC + Orfalg FT + 0x fuly F¥), (3.5)

in which |y indicates that the value is taken at § = § = 0. The Kiihler metrics of the matter
fields are also analytically continued into superspace as follows:

Yi = Yilo + 6 0, Yily FA + 0% 80, Yi| F" +6%0° 0, 00,Yi|, FAF",  (3.6)

where once again, the indices A, B denote C,T and X. The superpotential Yukawa cou-
plings in y%  can in principle be a function of the moduli fields, in which case

yz‘ojk = y%klo + 67 8¢Ay?jk|0FA. (3.7)
The MSSM soft supersymmetry breaking Lagrangian includes terms of the form

. 1 o

Leoy = —m?| @2 — 5 Ma XX + Aijryiin® ®IOF £ hee. |, (3.8)

in which m? are the soft scalar mass-squared parameters, M, are the gaugino masses,
and A;j;, are trilinear scalar interaction parameters. These terms are defined in the field
basis in which the kinetic terms are canonically normalized; the physical Yukawa couplings

Yijk = y?jk / (ZiZjZk)l/ 2 are in the definition of trilinear terms. From the spurion couplings

of egs. (B:H)-(B1), we obtain

M, = FA9,log(Re f,), (3.9)
o
Aijp = —FA041 Z
ijk 814 0og (Y;Y}Yk) )
m? = —FAFP 9,8, log Y. (3.10)
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Let us now consider the functional form of f,, ¥; and y% - First, note that the renormaliza-
tion procedure gives an additional dependence of these functions on the compensator field
C. This effect arises because introducing a cut-off scale Ayy explicitly breaks conformal
invariance, such that to formally restore it, A%V must be changed to C’UA%V. It can also
be understood by introducing Pauli-Villars regulators ¢, ¢ with mass terms of the form

/ d*0C3 Ay do. (3.11)
With the redefinition <;~5 = C¢, é has an effective mass CAyy. Therefore, the dependence

on the renormalization scale p is always accompanied by
%, (3.12)
Therefore, the conformal conpensator dependence of f, and Y; can be extracted from
COcRe fu = — i, Ref.,
CocY; = —%u@uYi. (3.13)

For the unnormalized Yukawa couplings y?jk, there is no C dependence due to the super-
symmetric nonrenormalization theorem. Since y% ;. is also assumed to be independent of T
and X, the expression for trilinear terms eq. (B.1() can be reduced to

A = Ai + Aj + Ay, (3.14)
in which
A; = FA9,10gY;. (3.15)
At the high scale Mg, which we will take to be the GUT scale (Mg = 2 x 10'6 GeV),

fa(Mg) = T,

Yi(Mg) = ——

W, (3.16)

In the above, I, = 0,1 depending on the type of D branes from which the gauge groups
originate. Since we wish to maintain gauge coupling unification at the GUT scale, we
assume that [, are the same for each of the SM gauge group factors. To preserve gauge
coupling unification, we also assume that the messenger pairs ¥, ¥ are complete GUT
multiplets e.g. of SU(5), as is standard in many models of gauge mediation. For general
sets of messengers, it is useful to (re)define N as

N = (number of messenger pairs) x (SU(5) Dynkin index of ¥), (3.17)

in which the SU(5) Dynkin index for the fundamental representation 5 is normalized to
unity. Note that N is the number of messenger pairs for the case in which ¥ and ¥ are 5
and 5 representations; we will restrict ourselves to this situation in this work.
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MEW Mmess = )\<X> MGUT

Figure 2: The particle content of deflected mirage mediation as a function of scale.

Above the mass scale of the messengers M ,ess, which is determined by the stabilization
of X by Mpess = (X), the matter content charged under the SM gauge group includes the
MSSM fields and the messenger pairs. We will use a primed notation to denote the group
theoretical parameters (e.g. the 3 functions) specific to this scale range (Mpess to Mg).
The (-function coefficients b/, are related to the MSSM beta function coefficients b, by

b, = b, + N, (3.18)
in which

33
(b3, ba,b1) = <—3,1,€>, (3.19)
for SU(3)¢, SU(2)r and U(1)y (with GUT normalization, such that b; = 3/5by). Below
the messenger scale, only the MSSM matter fields are present as light degrees of freedom of

the theory. For p < Myess, the gauge kinetic function can be easily obtained at one-loop:
b, n M3 by u XYCU‘
1672 XX 1672 w2

Re f, = Re fo(Mg) + (3.20)

For the K&hler metric, the one-loop RG equation is not simply integrable:

u/VCe g4

m

0 -0
YiikYijk
Y:Y;Yy

/\/%
AT Z/M [92C.(®;)] . (3.21)

The last term due to the gauge loop interaction can be explicitly integrated, but this is not

InY;(p) = InY;(Mg) + 1622/

possible for the Yukawa-dependent term. Fortunately, only the gauge-loop-induced term
depends on X. We rewrite the last term of eq. (B.21]) by

-3 o (a) ~ o () = 30 5 (e () e (7)) 02)

a a
in which oy is the conventionally defined gauge coupling parameter o, = g2 /47, such that

1 =4nRe fa. (3.23)
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The soft terms at the scale u derived from egs. (B.20) and (B.21)) using eqs. (B.9 B.10)

automatically include the renormalization group evolution of the soft parameters. This
implies that we obtain the correct soft mass formulae once we identify the contributions
from the threshold scale and then apply the usual RG equations for the soft mass
parameters. Omne caveat is that above My, it is necessary to take into account the
presence of the messenger fields in the beta functions. Although eq. (B.21) is an integral
equation, we can easily see that the Yukawa term does not contribute to the threshold
correction at Myess by comparing its value infinitesimally above and below the messenger
scale.

We now present the MSSM soft terms for deflected mirage mediation, including the values
at the GUT scale Mg and the messenger threshold effects at M pegs:

e Gaugino Masses. The gaugino mass parameters are given by
Fr g FC

M,(Mg) = — 3.24
Ma(Mr;css) = Ma(Mr—lrIcss) + AM@? (325)
in which the threshold corrections are
2 C X
g (Mmcss) F F
AM, = -NZ&—~ 2 | — + — . .2
1672 < C + X (3.26)

In the above, go is the unified gauge coupling at Mg, and b, are given by eq. (B-13)
(our convention is that b/, < 0 for asymptotically free theories).

e Trilinear terms. Recalling that
Aijk =A; + Aj + Ag, (327)

we have

D FT v FC€
Az :M — e £ —
(p=Ma) (3 ") T+T 1672 C

in which ~; denotes the anomalous dimension of ®;. Note that there are no threshold

(3.28)

contributions to the trilinear terms due to the messengers.

e Soft scalar masses. The scalar mass-squared parameters are given by

T 2
2/ _(r F
m2(n = Mg) = (5 —n:) ‘Tﬁ
0, ( FT FC A RO
- L - = — —I_h-C- - 77/ e )
202 \T+T C (1672)2 | C
m?(u = MI;GSS) = m?(/’[/ - Mr;l’_ess) + Am?’ (3'29)

where the threshold corrections are

gg(Mmess) <‘ E

2 _
Ami = ;2CQNW X

2 2

FC
C

FX pC
+ 4 h.c.) . (3.30)

+] s

For completeness, v;, ¥, #; and their primed counterparts are given in appendix A.
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4. Renormalization group analysis and low energy mass spectra

In this section, we will show the renormalization group (RG) running and the low energy
mass spectra for the supersymmetry breaking parameters of egs. (B.23)—(B.30).

In what follows, we will now restrict ourselves to the case in which the Kéahler potential
of T is of the “no-scale” form (p = 3). For the MSSM superpotential, we assume that R-
parity is conserved and bare superpotential mass terms are absent, such that the only terms
are the standard Yukawa couplings required for fermion mass generation. Here we do not
explicitly address the p/Bu problem of the MSSM, except to say that in a given string
theory model, supersymmetric bare mass terms are expected to be absent for the light
(i.e., below string scale) fields of the observable sector. However, gauge mediated models
have a well-known p/Bp problem. Furthermore, due to the anomaly mediated terms, the
Giudice-Masiero mechanism for solving the p problem results in a B term of the order
of the gravitino mass, which leads to a fine-tuning problem. The best option for addressing
this issue may then be the addition of extra singlets [RJ]; for a recent discussion see [2J].

We also comment here on the issue of flavor and CP violation in this scenario. As pre-
viously stated, we assumed a diagonal Kihler metric for the MSSM fields ®; (see eq. (2.))
to avoid flavor-changing neutral currents. However, it is well known that flavor-violating
effects can also be induced from renormalization group running if these diagonal terms are
not universal, which would correspond to generation-dependent modular weights. Here
we will assume generation-independent modular weights for simplicity, although the most
stringent bounds occur for the first two generations. Even with this form of the leading or-
der terms, higher-order corrections Kéhler potential couplings may exhibit nontrivial flavor
violation; a more comprehensive study of this issue is found in [[(§].

Turning to effects of CP violation, an inspection of eqs. (B-25)—(B.30) clearly demon-
strates that if there are nontrivial relative phases between FT /(T +T), F¢/C, and FX /X,
there will generically be irremovable flavor-independent CP-violating phases in the soft
supersymmetry breaking terms. Generically, if these phases are O(1), the electron and
neutrino electric dipole moments will exceed experimental bounds unless the superpartner
masses are in the multi-TeV range. In this paper, we will assume that the F terms are all
real, though a thorough exploration of CP violation in this context may be worthwhile.

With these assumptions, it is useful to express the anomaly and gauge mediated
contributions in terms of the modulus mediated contribution, which is governed by
FT /(T +T) =mg (see eq. (R.1)). Following the mirage mediation literature, we define as,

as
FC¢ Mp FT M
— P In —my. (4.1)

=« n-—- — =
C " mg T + T " ms/2

Our parameter «,, is the « of mirage mediation. To account for the gauge mediated terms,

we will also define oy by

FX F¢

Mp
¥ =% E = QO In - mo. (4.2)

With these definitions, mg sets the overall mass scale of the soft supersymmetry breaking
terms, and the dimensionless parameters a,, and o, denote the relative importance of
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anomaly mediation and gauge mediation, respectively. With this parametrization, the soft
terms at Mg take the form

Ma(Ma) = mo |1+ -2 a0 n M2 (4.3)
a G) — 0 I 16772 a-—-m m3/2 9 .
i i Mp
A;(Mg) = 1—ny) — m 1 ) 4.4
(M) = mo |1 =) = 2gonln (4.
i 0, M V. Mp \?
2 2 i P Vi P
‘(Mg) = 1—n;) — ml — m In —— , 4.5
m; (Me) = mp | (1= ni) 1672 nm3/2 (1672)2 <a nm3/2> ] )
and the threshold terms are given by
2
_ ga(Mmoss) MP
AM, = mONilez am (14 a4)In . (4.6)
4 2
2 _ 2 Ja(Miness) Mp

In principle, o, and o, can be considered to be continuous parameters, although in specific
string-motivated models they are typically given by discrete values. In this paper, we will
consider specific (discrete) string-motivated values of a,, and g4, and defer an analysis of
more general possibilities for future work. To focus on the new features which arise from
the gauge mediated terms, here we will fix «;,, = 1, which is the value predicted in the
standard KKLT model, and focus on the «, values which result from the stabilization of
the mediator field X via the stabilization mechanisms discussed in section f. Note that in
the radiative stabilization case a; = —1 (see eq. (B.39)). For stabilization via higher-order
superpotential terms, o, can take on different discrete values depending on the details and
dynamical origin of the higher-order terms (see eq. (R.54)).

4.1 (Deflected) Mirage unification

Before turning to a more detailed analysis of specific parameter sets, we will first address
the issue of mirage unification. In the KKLT mirage mediation scenario, one of the most
distinctive features of the soft terms is the unification of the gaugino masses at the mirage
unification scale Mp;,:

am

m 2
Mmirage = MG <Mi1/32> . (48)

Eq. ({.§) indicates that a;,, = 2 is needed to have mirage unification at a TeV scale, which is
desirable from the point of view of electroweak scale fine tuning. However, it is well known
that this value of oy, is not easily obtained within the KKLT approach. Another intriguing
feature of mirage mediation is that the soft trilinear scalar couplings (the A terms) and the
soft scalar mass-squares can also unify at Mpirage. Whether mirage unification happens
for these parameters depends on the modular weights (i.e., if 37,_; ; (1 —ny) = 1 for fields
with nonvanishing Yukawa couplings y;;i), or on whether the effects of the Yukawas on the
running are negligible, as is the case for the first and second generations; further details on
this issue can be found in [[5].
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In deflected mirage mediation, we find a similar mirage unification phenomenon for
the gaugino masses. From the form of the soft terms of eq. (f.J) and eq. (f.g), the new
mirage unification scale for the gauginos (see also [R1]) is

amp

Miirage = Mg [ 232} 7 4.9
mirage — G MP ) ( : )
in which p is given by
2Ngd 1 M
_ 1+ 32 1In —Migi (4.10)
P Smea e '
1672 ms3 /o

The mirage unification scale of the gauginos is thus deflected from the mirage mediation
result. The size of the deflection is dependent on «, IV, and Myess, which govern the size
of the messenger thresholds. As we will demonstrate with specific examples, the deflected
mirage gaugino mass unification scale can be as low as the TeV scale, even for a,, = 1.

For the A terms and the soft scalar mass-squares, the mirage unification behavior no
longer happens in general in the presence of the messengers. The exception is when the
messenger scale is below the scale of mirage unification which would occur in the absence of
the messenger thresholds, since the theory is then effectively the same as mirage mediation
below Mess. While the soft scalar mass-squares of the light generations typically no longer
unify, they can display a quasi-conformal behavior (i.e., the masses do not vary with scale)
below Mg in certain cases. Examples which display these features will be shown later
in the paper (additional examples can be found in [R1]).

In egs. (£9)-(E.IQ), the mirage mediation result of eq. ([L.g) is obtained only if N = 0.
This demonstrates that the mirage mediation limit is not reached when gauge mediation
is switched off (ag — 0); it only occurs when the messengers are removed from the theory
at all scales (N = 0). The reason is that the messengers affect the MSSM beta functions
above the messenger scale, which in turn affects the anomaly mediated terms. To show
this feature explicitly (which can also be seen from the expressions for the soft terms), in
figure ] we show the gauge coupling and gaugino mass renormalization group evolution in
two models with oy, = 1, ag = 0, mg = 1TeV and (a)-(b) N = 0, which is the standard
KKLT model, and (c¢)—(d) N = 3. For N = 0, mirage unification occurs at the usual scale
of ~ 10°GeV (for a,, = 1), while for N = 3 the mirage unification scale is deflected to a
lower value (below 108 GeV).

4.2 Examples

In addition to «;, and a4, there are both continuous and discrete parameters of the model.
The continuous parameters are mg, tan (3, and the messenger scale My,ess; the discrete
parameters are the number of messengers N, the modular weights n;, the exponents [, in
the gauge kinetic functions, and the sign of u (we trade p and B for mz and tan 3). Here
we will consider several values for M,ess and fix the other parameters as follows:

1
nU:nD:nL:nE:§, nyg, =ng, =1, lh=l=Il3=1, (4.11)

mo = 1TeV, tan 3 = 10, N =3, sign(p) = +1.
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Figure 3: The renormalization group evolution of the gauge couplings and gaugino masses, in
which oy, =1, ag = 0, Myess = 1012 GeV, mg = 1 TeV, and (a)-(b) N =0, and (c)—(d) N = 3, in
which case there are messenger threshold effects. The standard KKLT model is obtained for N = 0.

This choice of modular weights is often used in the mirage mediation literature, though
nonuniversal modular weights may also be of interest. In this paper, we focus on the effects
from the messenger thresholds, and leave the issue of general n; for future exploration.

We will now describe the renormalization group evolution and the resulting low energy
superpartner mass spectrum for sample parameter sets as a function of ay and Myess (for
@ = 1), with the other parameters fixed by eq. (f.11). These models are not specifically
chosen to obtain certain desired low energy features, such as a value of the neutralino relic
density within the allowed experimental range. It is straightforward to scan the parameter
space and find such allowed points; two examples of such dark-matter allowed parameter
sets were previously presented in [2I]. Here the goal is to exhibit the oy dependence and
to examine the implications of theoretically motivated values of oy on the gaugino mirage
unification scale and the pattern of soft masses at low energies.

Example 1: radiative stabilization. First, we will consider the case in which X has no
superpotential self-interaction terms, and instead is stabilized by radiative supersymmetry
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Figure 4: The renormalization group evolution of (a) the gaugino masses, (b) the first family soft
scalar mass-squares, (¢) the third family soft scalar mass-squares, and (d) the third generation A
terms, for the case of radiative stabilization, with o, =1, ag = —1, and Mpess = 1012 GeV.

breaking effects. As shown in eq. (£39), FX/X = —F¢/C, and hence oy, = —1. It
can immediately be seen from egs. (B.26)—(B-30) (or equivalently eqs. ({.6)—(.7)) that the
threshold effects identically vanish, and hence the only effect of the messengers is to change
the beta functions above the messenger scale.

To see the resulting effects on the low energy values of the soft masses, in figure [ we
show the renormalization group evolution of (a) the gaugino masses, (b)—(c) the soft scalar
masses of the first and third generations, and (d) the third generation trilinear scalar terms,
in a model with Mpess = 1012 GeV. Figure A shows that the resulting physics is then similar
to that of mirage mediation: the gaugino masses unify at a high scale, and the A terms and
the soft scalar masses show an approximate mirage unification behavior (due to our choice
of modular weights in eq. (f.11])). The subsequent renormalization group evolution drives
the gluino to be rather heavy; this heavy gluino controls the renormalization group flow
for many of the other soft terms. The sleptons, whose RG equations do not depend on the
gluino mass at one loop, tend to remain light, while the squarks are driven to be relatively
heavy. The A terms can also be relatively large, which can lead to a relatively light stop due
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family soft scalar mass-squares for o, =1, ag = —1, and Myees = 108 GeV.

to left-right splitting. The gauginos have too large a mass hierarchy to mix strongly, so the
lightest supersymmetric partner (LSP) is nearly pure bino. Bino annihilation tends to give
too large a relic density, but when 7 or ¢ is light enough coannhilation effects can reduce the
relic density to an acceptable value. With this set of parameters, the relic density remains
too large since coannihilation effects are not significant; however, it is possible to adjust
other parameters to obtain a low energy spectrum consistent with dark matter constraints.

If the messenger scale is lowered, for example to Mpess = 102 GeV, the mirage uni-
fication behavior for the gauginos occurs before the decoupling of the messengers; the A
terms and scalar mass-squares also unify at the mirage scale. In figure ], we show the RG
running of (a) the gauginos and (b) the third family soft scalar mass-squares. Since the
presence of the messengers flattens the running of the gluino (in fact, b4 = 0 for N = 3),
the mirage unification behavior occurs at a lower scale than in the case of a higher M egs.
The resulting slightly lighter gluino results in a lighter SUSY mass spectrum. The lightest
superpartner is again almost purely bino, and due to the lighter superpartners, the relic
abundance is larger than it was in the previous case with Mpyess = 1012 GeV.

Example 2: stabilization via nonrenormalizable operators. For our second ex-
ample, we will consider a model in which the X stabilization occurs through superpo-
tential couplings of the form given in eq. (:16). As shown in eq. (B-54), this leads to
FX/X = (=2/(n — 1))F°/C, such that a, = —2/(n — 1). We will consider the case
of n = 4, corresponding to stabilization through a perturbative nonrenormalizable oper-
ator, which implies ay = —2/3. With this stabilization mechanism, (X) ~ (Am3/2)1/2,
and hence if A ~ Mp, then Mpyes ~ 1019 GeV. In this example, we will set a,, = 1,
ag = —2/3, and consider two possible values of the messenger scale: Mpess = 1010 GeV
and Mpess = 10% GeV, which corresponds to a smaller value of the cutoff scale A.

In figure [f, we present the renormalization group evolution of the gaugino masses and

the soft scalar mass-squares of the first generation for Mpess = 10'° GeV in panels (a) and
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Figure 6: The renormalization group evolution of (a) the gaugino masses and (b) the first gen-
eration soft scalar mass-squares for Mpyess = 101 GeV, and (c) the gaugino masses and (d) the
first family scalar mass-squares for Myess = 10° GeV, for the case of the stabilization of X by a
nonrenormalizable superpotential term, with o, =1 and oy = —2/3.

(b), and for Myess = 10% GeV in panels (c) and (d). The physics of this case resembles that
of the radiative stabilization model, since oy < 0. For the case with a higher messenger
scale, the small threshold effects which result when o, < 0 again lead to mirage unification
of the gauginos and soft scalar masses at a relatively high scale of about 10° GeV (the scale
dependence the soft mass-squares and A terms of the third generation are not displayed
explicitly, as they too resemble that of the oy = —1 example of figure f and figure f). The
gluino is relatively heavy, which again leads to relatively large masses for the superpartners
with SU(3) charges and a large stop mass splitting. The LSP is once again almost pure bino,
with a characteristically too large relic abundance. When the messenger scale is smaller,
the gluino is significantly lighter, resulting in a more compressed superpartner spectrum.
However, the gauginos mix more strongly due to the smaller mass splitting of M; and
Ms. Though the LSP remains almost pure bino, the slight increase in the wino component
acts to lessen the relic density; this competes with effects of the lighter spectrum, which
act to increase the relic abundance. For this particular parameter set, we find that while
the neutralino relic abundance is too large to be allowed by dark matter constraints, it is
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slightly smaller for Myess = 106 GeV than it is for Myess = 1010 GeV.

The n = 4 case corresponds to the lowest nonrenormalizable operator that results in
the stabilization of X (note that the renormalizable n = 3 case results in ay = —1, just as
in the case of radiative stabilization). More generally, the mechanism of stabilizing X by
nonrenormalizable operators leads to —1 < oy < 0, with higher powers of n resulting in
oy approaching its limiting value of zero. For higher-order operators, clearly a4, while still
negative, has a smaller magnitude, such that the cancellation of the messenger threshold
effects is less efficient and more dramatic effects can appear. In our previous paper R1], we
presented a sample model with similar features, with oy, = 1 and oy = —1/2 (i.e., n = 5),
in which the dark matter abundance was in the allowed range due to stop coannihilation.

Example 3: stabilization via nonperturbative effects. For our last example, we
consider models in which that the superpotential self-interaction of the X field originates
from nonperturbative dynamics, such that n < 0 in eq. (2:16). From eq. (P-54), we see
that this will result in oy > 0. To obtain a concrete example, we will choose n = —1,
in which case oy = 1. Since (X) is now given by ~ (A4/m3/2)1/3, if mgz/o ~ 30TeV and
A ~ 109 GeV, then Myes ~ 102 GeV. As in previous examples, we will consider two
values of the messenger scale: Mees = 1012 GeV and Myess = 108 GeV.

In figure [, the renormalization group running of (a) the gaugino masses, (b) the first
generation soft scalar mass-squares, (c) the third generation soft scalar masses, and (d) the
third generation trilinear scalar terms, are shown for a,, = oy = 1 and Myees = 1012 GeV.
Here we can immediately see dramatically different features emerge for the case of ay > 0.
In particular, the threshold effects from gauge mediation become important and can drive
the gauginos to unify at a low scale of order 1 TeV. The gauginos become nearly degenerate
and mix strongly with each other; accordingly, the lightest neutralino is a general mixture
between the bino, wino, and higgsinos. In this example, the relic density falls within the

“well-tempered neutralino” [B(].

experimental limits, indicating that the LSP is indeed a
(We note in passing, however, that this parameter choice is still not suitable for benchmark
studies, because the lightest Higgs mass is too low to be allowed by experimental bounds.)

Since the messenger threshold corrections drive the gaugino masses, and particularly
the gluino mass, to be lighter, the low energy soft masses correspond in most cases to a
“compressed” SUSY spectrum (see e.g. [@, @]) Since the gluino is light, the squarks
also remain relatively light, though significantly heavier than the gluino. The very light
gluino leads to an intriguing feature of the RG flow of the soft scalar masses, which is the
quasi-conformal fixed point behavior at scales below the messenger scale. This feature can
be seen clearly for the lighter generations in panel (b), and to a lesser extent for the third
generation in panel (c) due to Yukawa couplings, of figure []. The messenger thresholds
lower the gluino mass to such an extent that it does not strongly participate in the RG
evolution of the other soft parameters, leading to the quasi-conformal behavior for the
scalar sparticles (particularly the squarks). Furthermore, the A terms no longer unify at a
high mirage scale, since Myess is larger than the original mirage unification scale.

Several of the qualitative features shown above change in the case in which the messen-
ger scale is lowered to Mess = 10% GeV, as shown in figure E In this case, we see that the
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Figure 7: The renormalization group evolution of (a) the gaugino masses, (b) the first family
soft scalar mass-squares, (c¢) the third family soft scalar mass-squares, and (d) the third generation
A terms, for the case of stabilization due to nonperturbative superpotential terms, with «a,, = 1,
ag =1, and Myess = 1012 GeV.

messenger scale is below the mirage unification scale, and hence the gauginos, soft scalar
mass-squares, and the A terms all unify at a high scale of order 10? GeV. The threshold
effects drive the gluino mass to very small values, such that the gluino is the LSP. This
results again in a quasi-conformal behavior of the soft mass-squares. The superpartner
spectrum is slightly less compressed, since the point at which the gluino becomes very light
occurs at a later point in the running. The spectrum includes (i) very light states, which
are the gluino LSP, two light neutralinos (including the wino-dominated next lightest su-
perpartner (NLSP)), and the lighter chargino, (ii) moderately heavy states (~ 800 GeV)
which include the sleptons, charginos, and neutralinos, and (iii) heavier squarks, of order
1.1-1.2TeV. For ay > 0, the threshold effects can either lead to a gluino LSP or a slepton
LSP, if the RG running above the messenger threshold is not strong enough to drive to
drive the binos and winos sufficiently light.
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Figure 8: The renormalization group evolution of (a) the gaugino masses, (b) the first family
soft scalar mass-squares, (c¢) the third family soft scalar mass-squares, and (d) the third generation
A terms, for the case of stabilization due to nonperturbative superpotential terms, with «a,, = 1,
ag =1, and Myess = 108 GeV.

5. Conclusions

In this paper, we have investigated both theoretical and phenomenological aspects of de-
flected mirage mediation, which is a recently proposed string-motivated model of super-
symmetry breaking in which modulus (gravity) mediation, gauge mediation, and anomaly
mediation all contribute to the soft terms. In deflected mirage mediation, the minimal
KKLT mirage mediation model, which predicts comparable modulus and anomaly medi-
ated terms, is extended to include gauge mediated terms. The gauge mediated terms arise
from additional visible sector fields: the gauge singlet mediator field X and N vectorlike
pairs of messenger fields with SM charges. The mediator X acquires a SUSY breaking F
term through supergravity effects due to its mixing with the Kéhler modulus 7.

We have explicitly demonstrated that X can be stabilized either by radiative correc-
tions or higher-order terms in the superpotential, which can be either nonrenormalizable
or nonperturbative in origin. The resulting gauge mediated contributions to the observable
sector soft terms are proportional to the anomaly mediated contributions, with the propor-
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tionality factor a, (with FX/X = a,F®/C). Since the anomaly mediated and modulus
mediated terms in this scenario are comparable (their ratio is given by a,, which is the «
of mirage mediation), all three contributions are relevant for the soft terms. We computed
the MSSM soft terms and investigated the renormalization group evolution and resulting
pattern of superpartner masses at low energies for the minimal KKLT model (o, = 1),
focusing on values of o, that emerge from each of the X stabilization mechanisms. We
find that the gaugino mass mirage unification scale is deflected from the value obtained
in the absence of the messengers. The low energy physics strongly depends on the sign
of ay. For ay < 0, which corresponds to stabilization by radiative effects or perturbative
nonrenormalizable superpotential terms, the threshold effects are small and the basic pat-
tern of soft masses is similar that of mirage mediation, with a bino-dominated LSP. For
ag > 0, which corresponds to stabilization by nonperturbatively-generated operators, the
threshold effects can be large; this can deflect the gaugino mass mirage unification scale to
TeV values, and typically drives the stops and gluinos to be light. In this case, the LSP can
even be the gluino, though it can also be a mixed bino-wino-higgsino (i.e., “well-tempered”)
neutralino which is allowed by dark matter constraints.

In conclusion, deflected mirage mediation provides a rich setting in which to investi-
gate the theoretical and phenomenological implications of low energy supersymmetry. One
particular direction of interest is to concrete model building would be of interest. Deflected
mirage mediation also has the advantage that it encompasses three of the standard super-
symmetry breaking mediation mechanisms within one generalized framework, in which the
relative contributions from each mechanism can be adjusted by fixing a small number of
parameters. Although here we considered discrete parameter values motivated from the
top-down approach, we can take a bottom-up approach in which these parameters are taken
to be continuous, which allows us to dial between many of the different known models of
supersymmetry breaking. The resulting generalized framework lends itself to more general
studies of the phenomenological implications of low energy supersymmetry at the LHC.
Work along these lines is currently in progress [BJ].
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A. Anomalous dimensions

At one loop, the anomalous dimension is given by
1
% =2 gaca(®i) = 5 D lyaml*, (A1)
a Ilm

in which ¢, is the quadratic Casimir, and y;;,, are the normalized Yukawa couplings. Here
we will consider only the Yukawa couplings of the third generation v, yp, and y,-. For the
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MSSM fields @, U¢, D¢, L, E¢, H,, and Hy, the anomalous dimensions are

8 9 34 1
Qi = 393 + 92 + =91 — (y7 +yi)dis.

30

T, = §g§ + 185 — 2y76;3,
YD, = 2933 + 125 — 2ypdi,
TLi = ;93 + 1%91 y2dis,
VE; = gﬁ — 2y26;3,

VH, = ggg + 13091 -3y}

Vi, = ggg + 130 — 3y — v2,

(A.2)

respectively. Above Mess, the beta function of the gauge couplings changes because of the

messenger fields. However, v; does not change according to eq. (A.1]), and hence 7} = ;.

The ;’s are given by the expression

A =2 Z g4b Ca Z |yzlm| byzlm7

(A.3)

in which b,,, is the beta function for the Yukawa coupling ¥;;,,. For the MSSM fields, the

4;’s are given by

glox
Y i
D,
YL,i
VE,i
YH,
YH,

where

3
8 8
= §b3g§ + 1—5171%1 — 2y by0s3
= §539§ + 3blgi1 — 2y, bydss
3 15
3 3
= 55293 + Eblgil — y2br0s3
6
= gblgi1 — 292, 8;3
3

= 2b292 + Olngi1 — 3y;by
3
2b292 + 0619? — 3y2by — y2b,,

16 13
by = 6y +yp — 395 — 395 — 1—59%,
16 7
by = yi + 6yp +y2 — 395 — 395 — 1—69%,
9
br = 3yj +4y7 — 395 — —ai.

— 929 —

8 3 1
= ~b3gs + 552931 + %blgf — (y£be + ypbe)dis

(A4)



4/ is obtained by replacing b, with b/, = b, + N in eq. (A:9). Finally, 6;, which appears in
the mixed modulus-anomaly term in the soft scalar mass-squared parameters, is given by

0 = 4Zgaca z Z |yZ]k| — Ny — Ny — nk) (A7)

1,5,k

For the MSSM fields, the 6; are

16
00 = —95 + 395 + —2(yi (p — ng, —ng —nu) +yp(p — nu, — ng — np))dis,

3 15

16
Ou: = 3 g3+ — 15 — 4yt (p — npg, —ng — nu)dia,
16 4
Op; = 395 + = 15 — 4y3(p — ng, — ng — np)dis,
3 4
0 = 395 + 391 —2y2(p — nu, —ng — ng)ds,
12
0 = EQ% —4y%(p — nu, — np, — ng)ds,
3
On, = 393+ 91 — 6y (p = nat, —nQ — nw);
2,3 9 2 2
O, = 393 + 201 — 64 (p—nu, —nq —np) —2y;(p — n@, — nL — NE). (A.8)

As in the case of ~;, 0. is the same as 6;.
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